Ali rasoolzadeh

Faculty of   Engineering
Department of  Chemical Engineering
 
Post-Doctoral Fellowship Shiraz University (2019-2021)
Ph.D. Chemical Engineering Shiraz University (2012-2018).
M.Sc. Chemical Engineering Shiraz University of Technology (2009-2011).
B.Sc. Chemical Engineering Persian Gulf University (2004-2008)
Email:a.rasoolzadeh@bkatu.ac.ir
Phone Number: 061-52721191
Update: 2023/11/04

 

· Experimental study and thermodynamic/kinetic modeling of gas hydrate systems

· PVT phase behavior calculations (VLE, LLE, SLE)

· Carbon capture and storage (CCS)

· Hydrogen fuel

· Process simulation, sensitivity analysis and optimization

· Physical property calculations

· Green materials (amino acids, sugar alcohols, ionic liquids)

· Gas sweetening unit (Simulation, modeling, optimization)

1) Farniaei, M., Abbasi, M., Rasoolzadeh, A., & Rahimpour, M. R. (2013). Enhancement of methanol, DME and hydrogen production via employing hydrogen permselective membranes in a novel integrated thermally double-coupled two-membrane reactor. Journal of Natural Gas Science and Engineering, 14, 158-173.

2) Farniaei, M., Abbasi, M., Rasoolzadeh, A., & Rahimpour, M. R. (2014). Performance enhancement of thermally coupling of methanol synthesis, DME synthesis and cyclohexane dehydrogenation processes: Employment of water and hydrogen permselective membranes via different recycle streams. Chemical Engineering and Processing: Process Intensification, 85, 24-37.

3) Sedghamiz, M. A., Rasoolzadeh, A., & Rahimpour, M. R. (2015). The ability of artificial neural network in prediction of the acid gases solubility in different ionic liquids. Journal of CO2 Utilization, 9, 39-47.

4) Aliabadi, M., Rasoolzadeh, A., Esmaeilzadeh, F., & Alamdari, A. (2015). Experimental study of using CuO nanoparticles as a methane hydrate promoter. Journal of Natural Gas Science and Engineering, 27, 1518-1522.

5) Rasoolzadeh, A., Javanmardi, J., Eslamimanesh, A., & Mohammadi, A. H. (2016). Experimental study and modeling of methane hydrate formation induction time in the presence of ionic liquids. Journal of Molecular Liquids, 221, 149-155.

6) Rasoolzadeh, A., & Shariati, A. (2017). Considering double occupancy of large cages in nitrogen and oxygen hydrates at high pressures. Fluid Phase Equilibria, 434, 107-116.

7) Moeini, H., Bonyadi, M., Esmaeilzadeh, F., & Rasoolzadeh, A. (2018). Experimental study of sodium chloride aqueous solution effect on the kinetic parameters of carbon dioxide hydrate formation in the presence/absence of magnetic field. Journal of Natural Gas Science and Engineering, 50, 231-239.

8) Ghaedi, H., Javanmardi, J., Rasoolzadeh, A., & Mohammadi, A. H. (2018). Experimental study and thermodynamic modeling of methane hydrate dissociation conditions in the simultaneous presence of BMIM-BF4 and ethanol in aqueous solution. Journal of Chemical & Engineering Data, 63(5), 1724-1732.

9) Parvaneh, K., Rasoolzadeh, A., & Shariati, A. (2019). Modeling the phase behavior of refrigerants with ionic liquids using the QC-PC-SAFT equation of state. Journal of Molecular Liquids, 274, 497-504.

10) Khayyat, Y., Esmaeilzadeh, F., & Rasoolzadeh, A. (2019). Minimum Miscibility Pressure Using the Multiple Mixing-cell Combined with the PC-SAFT Equation of State. Physical Chemistry Research, 7(1), 111-130.

11) Rasoolzadeh, A., Javanmardi, J., & Mohammadi, A. H. (2019). An experimental study of the synergistic effects of BMIM-BF4, BMIM-DCA and TEACl aqueous solutions on methane hydrate formation. Petroleum Science, 16(2), 409-416.

12) Rasoolzadeh, A., & Shariati, A. (2019). Hydrogen hydrate cage occupancy: A key parameter for hydrogen storage and transport. Fluid Phase Equilibria, 494, 8-20.

13) Rasoolzadeh, A., Aaldijk, L., Raeissi, S., Shariati, A., & Peters, C. J. (2020). Experimental investigation and thermodynamic modeling of xenon clathrate hydrate stability conditions. Fluid Phase Equilibria, 512, 112528.

14) Rasoolzadeh, A., Lameris, G. H., Raeissi, S., Shariati, A., & Peters, C. J. (2020). Experimental study and thermodynamic modeling of CCl4 + O2 and CCl4 + N2 hydrate equilibria. Fluid Phase Equilibria, 514, 112571.

15) Rasoolzadeh, A., Raeissi, S., Shariati, A., & Peters, C. J. (2020). Experimental measurement and thermodynamic modeling of methane solubility in triethylene glycol within the temperature range of 343.16–444.95 K. Journal of Chemical & Engineering Data, 65(8), 3866-3874.

16) Rasoolzadeh, A., Raeissi, S., Shariati, A., & Peters, C. J. (2020). Experimental measurements and thermodynamic modeling of high-pressure propane solubility in triethylene glycol. The Journal of Supercritical Fluids, 163, 104881.

17) Mehrabi, K., Javanmardi, J., Rasoolzadeh, A., & Mohammadi, A. H. (2020). Thermodynamic modeling of clathrate hydrate stability conditions in the presence of amino acid aqueous solution. Journal of Molecular Liquids, 313, 113488.

18) Esmaeilzadeh, F., Hamedi, N., Karimipourfard, D., & Rasoolzadeh, A. (2020). An insight into the role of the association equations of states in gas hydrate modeling: a review. Petroleum Science, 17(5), 1432-1450.

19) Rasoolzadeh, A., Pedroso, A. C., Shariati, A., & Peters, C. J. (2020). Solubility of methane in octamethylcyclotetrasiloxane: Experimental measurement and thermodynamic modeling. Fluid Phase Equilibria, 522, 112701.

20) Irannezhad, H., Javanmardi, J., Rasoolzadeh, A., Mehrabi, K., & Mohammadi, A. H. (2021). Semi-clathrate hydrate phase stability conditions for methane + TetraButylAmmonium Bromide (TBAB) / TetraButylAmmonium Acetate (TBAA) + water system: Experimental measurements and thermodynamic modeling. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 76, 75.

21) Roostaei, M., Javanmardi, J., Rasoolzadeh, A., & Mohammadi, A. H. (2021). Experimental determinations of the Complete Inhibition, the Slow Growth, and the Rapid Failure Regions of methane hydrate formation in the presence of Polyvinylpyrrolidone and Polyvinylcaprolactam aqueous solutions. Energy & Fuels, 35(5), 3780-3787.

22) Saberi, A., Alamdari, A., Rasoolzadeh, A., & Mohammadi, A. H. (2021). Insights into kinetic inhibition effects of MEG, PVP, and L-tyrosine aqueous solutions on natural gas hydrate formation. Petroleum Science, 18(2), 495-508.

23) Mehrabi, K., Javanmardi, J., Rasoolzadeh, A., & Mohammadi, A. H. (2021). Effects of diethanolamine and ethylene glycol + diethanolamine aqueous solutions on methane hydrate stability conditions: Experimental measurements and thermodynamic modeling. Journal of Molecular Liquids, 328, 115472.

24) Rasoolzadeh, A., Bakhtyari, A., Sedghamiz, M. R., Javanmardi, J., Nasrifar, K., & Mohammadi, A. H. (2022). A thermodynamic framework for determination of gas hydrate stability conditions and water activity in ionic liquid aqueous solution. Journal of Molecular Liquids, 347, 118358.

25) Shariatrad, F., Javanmardi, J., Rasoolzadeh, A., & Mohammadi, A. H. (2022). Experimental Measurement and Thermodynamic Modeling of the Wax Disappearance Temperature (WDT) for a Quaternary System of Normal Paraffins. ACS Omega, 7, 16928–16938.

26) Nasrifar, K., Javanmardi, J., Rasoolzadeh, A., & Shoushtari, A. (2022). Experimental and Modeling of Methane + Propane Double Hydrates. Journal of Chemical & Engineering Data.

27) Rasoolzadeh, A., Mehrabi, K., Bakhtyari, A., Javanmardi, J., Nasrifar, K., & Mohammadi, A. H. (2022). Clathrate hydrates stability conditions in the presence of aqueous solutions of environmentally friendly sugar-derived compounds: A precise thermodynamic approach. Chemical Engineering Science, 260, 117862.

28) Rasoolzadeh, A., Bakhtyari, A., Mehrabi, K., Javanmardi, J., Nasrifar, K., & Mohammadi, A. H. (2022). Determination of clathrate hydrates stability conditions and water activity in aqueous solutions containing natural amino acid and its blend with ionic liquid, alcohol, and salt using a thermodynamic approach. Fuel, 326, 124960.

29) Valadan Zoj, A.M., Javanmardi, J., Rasoolzadeh, A., & Mohammadi, A. H. (2022). Experimental measurement and thermodynamic modeling of methane hydrate dissociation conditions in the presence of diglycolamine aqueous solution. Industrial & Engineering Chemistry Research.

30) Rasoolzadeh, A., Bakhtyari, A., Mehrabi, K., Javanmardi, J., Nasrifar, K., & Mohammadi, A. H. (2022). Determination of clathrate hydrates dissociation conditions in the presence of gas dehydration, sweetening, and other nitrogenated additives using a predictive thermodynamic approach. Journal of Natural Gas Science and Engineering, 107, 104773.

31) Bakhtyari, A., Mehrabi, K., Rasoolzadeh, A., Mofarahi, M., Lee. C. H. (2023). Generalized Viscosity Model Based on Free-volume Theory for Amino Acid Salt Solutions as Green CO2 Capture Solvents. Journal of Molecular Liquids, 383, 122176.

32) Bakhtyari, A., Rasoolzadeh, A., Mehrabi, K., Mofarahi, M., Lee. C. H. (2023). Facile estimation of viscosity of natural amino acid salt solutions: Empirical models vs artificial intelligence. Results in Engineering, 18, 101187.

33) Bakhtyari, A., Rasoolzadeh, A., Vaferi, B., Khandakar, A., (2023). Application of machine learning techniques to the modeling of solubility of sugar alcohols in ionic liquids. Scientific Reports, 13, 12161.

34) Hamidpour, S., Javanmardi, J., Rasoolzadeh, A., Mohammadi, A.H. (2023). Impacts of Triethylene Glycol and Polyvinyl Caprolactam on Dissociation Conditions and Complete Inhibition Region of Methane Hydrate. Energy & Fuels, 37, 11902–11913.

35) Moradi, E., Javanmardi, J., Rasoolzadeh, A., Mohammadi, A.H. (2023). Thermodynamic consistency assessment of gas hydrates dissociation conditions in porous media. Fluid Phase Equilibria, 576, 113943.

6.1.8.0
گروه دورانV6.1.8.0